Taylor series

noun
Tay·​lor series | \ ˈtā-lər- How to pronounce Taylor series (audio) \

Definition of Taylor series

: a power series that gives the expansion of a function f (x) in the neighborhood of a point a provided that in the neighborhood the function is continuous, all its derivatives exist, and the series converges to the function in which case it has the form {latex}f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \dots + \frac{f^{[n]}(a)}{n!}(x - a)^{n}{/latex} where f[n] (a) is the derivative of nth order of f(x) evaluated at a

called also Taylor's series

First Known Use of Taylor series

1842, in the meaning defined above

History and Etymology for Taylor series

Brook Taylor †1731 English mathematician

Learn More About Taylor series

Time Traveler for Taylor series

Time Traveler

The first known use of Taylor series was in 1842

See more words from the same year

Dictionary Entries Near Taylor series

taylorite

Taylor series

Taylorsville

See More Nearby Entries 

Statistics for Taylor series

Cite this Entry

“Taylor series.” Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-webster.com/dictionary/Taylor%20series. Accessed 18 Jan. 2022.

Style: MLA
MLACheck Mark Icon ChicagoCheck Mark Icon APACheck Mark Icon Merriam-WebsterCheck Mark Icon

WORD OF THE DAY

Test Your Vocabulary

Farm Idioms Quiz

  • cow coming home
  • What does 'poke' refer to in the expression 'pig in a poke'?
How Strong Is Your Vocabulary?

Test your vocabulary with our 10-question quiz!

TAKE THE QUIZ
Universal Daily Crossword

A daily challenge for crossword fanatics.

TAKE THE QUIZ
Love words? Need even more definitions?

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!