relation

3 ENTRIES FOUND:

relation

In logic, a relation R is defined as a set of ordered pairs, triples, quadruples, and so on. A set of ordered pairs is called a two-place (or dyadic) relation; a set of ordered triples is a three-place (or triadic) relation; and so on. In general, a relation is any set of ordered n-tuples of objects. Important properties of relations include symmetry, transitivity, and reflexivity. Consider a two-place (or dyadic) relation R. R can be said to be symmetrical if, whenever R holds between x and y, it also holds between y and x (symbolically, (x) (y) [Rxy Ryx]); an example of a symmetrical relation is “x is parallel to y.” R is transitive if, whenever it holds between one object and a second and also between that second object and a third, it holds between the first and the third (symbolically, (x) (y) (z ) [(Rxy Ryz) Rxz]); an example is “x is greater than y.” R is reflexive if it always holds between any object and itself (symbolically, (x) Rxx); an example is “x is at least as tall as y” since x is always also “at least as tall” as itself.

This entry comes from Encyclopædia Britannica Concise.
For the full entry on relation, visit Britannica.com.

Seen & Heard

What made you look up relation? Please tell us what you were reading, watching or discussing that led you here.

Get Our Free Apps
Voice Search, Favorites,
Word of the Day, and More
Join Us on FB & Twitter
Get the Word of the Day and More