In logic, a relation that holds between two propositions when they are linked as antecedent and consequent of a true conditional proposition. Logicians distinguish two main types of implication, material and strict. Proposition p materially implies proposition q if and only if the material conditional p q (read “if p then q”) is true. A proposition of the form p q is false whenever p is true and q is false; it is true in the other three possible cases (i.e., p true and q true; p false and q true; p false and q false). It follows that whenever p is false, p q is automatically true: this is a peculiarity that makes the material conditional inadequate as an interpretation of the meaning of conditional sentences in ordinary English. On the other hand, proposition p strictly implies proposition q if and only if it is impossible for p to be true without q also being true (i.e., if the conjunction of p and not-q is impossible).

This entry comes from Encyclopædia Britannica Concise.
For the full entry on implication, visit

Seen & Heard

What made you look up implication? Please tell us what you were reading, watching or discussing that led you here.

Get Our Free Apps
Voice Search, Favorites,
Word of the Day, and More
Join Us on FB & Twitter
Get the Word of the Day and More