group theory


group theory

In modern algebra, a system consisting of a set of elements and an operation for combining the elements, which together satisfy certain axioms. These require that the group be closed under the operation (the combination of any two elements produces another element of the group), that it obey the associative law, that it contain an identity element (which, combined with any other element, leaves the latter unchanged), and that each element have an inverse (which combines with an element to produce the identity element). If the group also satisfies the commutative law, it is called a commutative, or abelian, group. The set of integers under addition, where the identity element is 0 and the inverse is the negative of a positive number or vice versa, is an abelian group. See also field theory.

This entry comes from Encyclopædia Britannica Concise.
For the full entry on group theory, visit Britannica.com.

Seen & Heard

What made you look up group theory? Please tell us what you were reading, watching or discussing that led you here.

Get Our Free Apps
Voice Search, Favorites,
Word of the Day, and More
Join Us on FB & Twitter
Get the Word of the Day and More